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II. Specific Objectives

The overall objective is to investigate the robust-
ness to departures from independence to methods currently in 4
use in reliability studies when competing failure modes or com-
peting causes of failure associated with a single mode are
present in a series system. We shall also refer to such com-
petitive events as competing risks. The approach will be through
the investigation of certain aspects of specific parametric multi-
variate distributions or by classes of distributions which are
appropriate in reliability analyses when there are competing
risks present.

The specific objectives are:

1) to assess the error incurred in modeling system
life in a series system assumed to have indepen-
dent component lifetimes when in fact the com-
ponent lifetimes are dependent.

2) to assess the error in estimating component param- . -

eters (i.e., component reliability, mean com-
ponent life, etc.) in a series system employing
either parametric or nonparametric models which
assume independent component failure times when
in fact the lifetimes are dependent and follow
some plausible multivariate distribution.*

3) to derive bounds on component reliability when
the failure modes are dependent and fall in a
particular dependence class (e.g., positive quad-
rant dependence, positive regression dependence,
etc.).

I
4) to develop tests of independence, based on data

collected from series systems, by making some
restrictive assumption about the structure of the
systems.**

*• A plausible parametric multivariate distribution will be

one that satisfies one of the following conditions:

i) the distribution of the minimum of the component
failure times closely approximates widely accept-
ed families of system life distributions.

or ii) the marginal distributions closely approximate
the distributions of component failure times in
the absence of other failure modes.

**This objective has been added to the original objectives be-

cause it answers a natural question raised by our preliminary
investigation.

. .- - - - ---.... .*....... . -- . .. . .... ....... ..... ........... .. .... . ..... ....... . . . ..... ? .
" -' " .-' _z ." _ .". -" . - . -' '-- ".. -:.-, ' _. ' ' " - " " " -. . . "- -
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211." Introduction to Problem and Significance of Study

Alvin Weihberg (1978) in an editorial comment in the'
published proceedings' of a workshop' on Environmental Biologi-
"al Hazards and Competing Risks noted that "the question of
competing risks will not quietly go away: corrections for com--
peting risks should be applied routinely to data.' The problem . - . -.

- of competing. -risks commonly arises in .a wide range of experi-
mental situations. Although we shall confine our attention
in the following discussion to those situations involving
series systems'in which competing failure modes or competing
causes of failure associated with a single mode are present,
it is certainly true that we might just-as easily speak of
clinical trials, animal experimentsi or other medical and bio-

, logical studies where competing events interrupt our study of
* the main event of interest (c3. Lagokos (1979)).

Consider electronic or mechanical systems, such as
satellite transmission equipment, computers, aircraft# missiles
and other weaponry consisting of .several components in series.Usually each component will have a random life length and the
life of the entire system will end with the failure of the
shortest lived component, We'will examine two situations more
closely in which competing.risks play a vital role.

* First, suppose we are-attempting to evaluate system life
from knowledge 'of the individual component lifetimes. Such
an evaluation will utilize either an analysis involving math-
ematical statistics or-a computer simulation... At a recent
confirence -'on Modeling and Simulation, McLean (1981) presented
a scheme to simulate the life of a-missile which consisted of
many major components in series.- The failure distribution asso-J 3 ciatkd with each component was assumed to be known (usually
exponential or Weibull.) -.: To arrive at the system failure dis-
tribution, the components were assumed to act independehtly of
each "other. Realistically, this may or may not be the case.
If the component lifetimes were 'dependent for any reason, the"
coputed system failure distribution (as well as its subsequent
parameters such as system mean life and system reliability for
a specified time) would only crudely approximate the true
distribution. The first specific aim of this proposal is to
ascertain the error incurred in modeling system life in a.

* Aeries system assumed to have independent component lifetimes
(i.e., risks) when, in fact, the risks, are dependent.

Second, suppose we wish to evaluate some aspect of the
• . distribution of a particular failure mode based on a typical

" life test of a series system. The response of interest is the
time until failure of a particular mode of interest. Frequently
this response will not be observable due to the occurrence of
some other event which precludes failure associated with the
mode of interest. We shall tem such competing events which
interrupt our study of the maki failure modes of interest as
competing risks.

- **d**.* *'."*.*.. / .'-*-
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Competing risks arise in such reliability studies when

1) the study is terminated due to a lack of funds or the
pre-determined period of observation has expired
(Type I censoring).

2) the study is terminated due to a pre-determined number
of failures of the particular failure mode of interest
being observed (Type II censoring).

3) some systems fail because components other than the
one of interest malfunction.

4) the component of interest fails from some cause other
than the one of interest.

In all four situations, one may think of the main event of
interest as being censored, i.e., not fully observable. In the
first two situations, the time to occurrence of the event of
interest should be independent of the censoring mechanism. In
such instances, the methodology for estimating relevant reliabili-
ty probabilities has received considerable attention (cf. David
and Moeschberger (1978), Kalbfeish and Prentice (1980), Elandt- .° -
Johnson and Johnson (1980), Mann, Schafer, Singpurwalla (1974)
and Barlow'and Proschan (1975) for references and discussion)*..
In the third situation, the time to failure of the component of -interest may or may not be independent of the failure times of - --

'other cofnponents in the system. For example, there may be
common environmental factors such as extreme temperature which
may affect the lifetime of several components. Thus the question
of dependent'competing risks is raised. A similar observation
may be made with respect to the fourth situation, viz., failure
times associated with different failure modes of a single com- -

ponent may be dependent. For a very special type of dependence,
the models discussed by Marshall-Olkin (1967), Langberg, Proschan
and Quinzy (1978), and Langberg, Proschan, and Quinzy (1981)
allow one .to convert dependent models into independent ones.

If no assumptions whatever are made about the type of
dependence between the distribution of potential failure times,
there appears to be little hope of estimating relevant component
parameters. In some situations, one may be appreciably misled
(cf. Tsiatis (1975), Peterson (1976)). However, as Easterling -.+
(1980) so clearly points out in his review of Birnbaum's (1979)
monograph

Othere seems to be a need for some robustness
studies. How far might one be off, quantita-
tively, if his analysis is based on incorrect
assumptions?"

The second specific aim will address this important
issue. First if a specific parametric model which assumes

.e .-

* ' *k.--. .
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independent risks has been used in the analysis, it would
be of interest to know how the error in estimation-is" affected by this assumption of independence. That is, if
independent specific parametric distributions are assumed
for the failure times associated with different failure

- modes when we really should use a bivariate (or multivariate)
distribution, then what is the .magnitude of the. error in
estimating .component parameters? Secondly, one may wish to
allow for a less stringent type of model assumption, and ask
the same question with regard to the estimation error. That"
is, if a nonparametric analysis is performed, assuming in-
dependent risks, when some types of dependencies may be
present, then what is the magnitude of the estimation error?

S
The third specific aim will attempt to obtain bounds on

the component reliability when the failure times belong to
a broad dependence class e.g., association, positive quadrant,
dependence, positive regression dependence, etc.),. more
details will be presented in the methods section.'

In summary, competing risk analyses have been performed

in the past and will continue to be performed in the future.
This study will provide the user of such techniques with a
clearer understanding of the robustness to departures from
independent risks, .an assumption which most of the methods.
currently in use assume.

...-.-S
p..."..

• U. **.*• * -
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IV. Progress Report on Second Year's Work

A summary of the first year's work is reported in the annual report
dated October 26, 1983. The paper dealing with the Gumbel (1960) ":."
bivariate exponential model appeared in the August 1984 issue of

Technometrics. A copy of this paper will be included in Appendix A.
Also, the paper dealing with the asymptotic bias of the product limit
estimator under dependent competing risks has been accepted for publica-
tion in the Journal of the Indian Association for Productivity,
Reliability, and Quality Control. This article is to appear in 1984.
(See Appendix C of the first year's annual report.) The paper on tests
for independence with censored data has been revised and has now been
accepted for publication in the Proceedings of the Conference on
Reliability and Quality Control held at the University of Missouri in
June 1984. The paper was presented as an invited paper at that meeting.
A copy of the revised paper is included in Appendix B.

A paper which develops improved bounds on component reliability
based on system data is displayed in Appendix C. These bounds, which
are tighter than those of Peterson (1976), are obtained by specifying
a range of possible concordances for the various modes of failure in a
series system. This work was presented at the National Statistical
Meetings in Philadelphia in August 1984.

Another paper, in a slightly different vein, which deals with - .

assessing the goodness of several methods of estimating the survival
function (reliability) when there is extreme right censoring, is
displayed in Appendix D. This work, which was presented at the
Spring statistical meeting in 1984 in Orlando, Florida, has been
accepted for publication in Biometrics.

Another paper, which deals with reduced bias estimators of the
joint reliability function for the Marshall-Olkin and Block-Basu
bivariate exponential distribution, has been tentatively accepted for
publication in Sankya. A copy of this paper appears in Appendix E.

Finally, work is near completion with respect to evaluating the
consequences of erroneously assuming independence when modeling system
reliability from complete component information for all three Gumbel
bivariate exponential models, the Downton's bivariate exponential
model, and Oakes bivariate model. It is anticipated that a paper
will be written in the next month. This work will be presented in an
invited talk at the Spring statistical meeting in Raleigh, North
Carolina. Another paper will be written by January 1, 1985 which
examines the impact of the independence assumption on the magnitude
of the estimation error in estimating component reliability and mean
life from data collected from series systems.

A"-

.. " '-.' ".*. . . ".. °. .. -'.'-, .. .-. .. " - " .' .' .'-...- .'-. .- .' "-" -. ... . -. - .- -. . - -. .. - -. ... ,- i
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V. Methods S

We refer to pages 8-52 of the original proposal for a discussion

of the general methodology.

a-
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Consequences of Departures From
Independence in Exponential Series Systems

M. L. Mooschberger John P. Klein

Department of Preventive Medicine Department of Statistics
The Ohio State University The Ohio State University

Columbus. OH 43210 Columbus. OH 43210

This article investiptes the consequences of departures from independence when the compo- .

nent lifetimes in a series system are exponentially distributed. Such departures am studied
when the joint distribution is assumed to follow a Gumbel bivariate exponential model Two
distinct situations are considered. First. in theoretical modeling of series systems, when the
distribution of the component lifetimes is assumed, one %ishes to compute system reliability
and mean system life. Second, errors in parametric and nonparametric estimation of compo-

nent reliability and component mean life are studied based on life-test data collected on series ,n. - -
systems when the assumption of independence is made erroneously. System with two comn-
ponents are studied.

KEY WORDS: Competing risks; Component life; Modeling series systems; Robustness
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1. INTRODUCTION 1976. and Basu 1981 for a discussion of nonidentifia-
Consider a system consisting of several components bility results.) In many situations one may be appre-

linked in series. For such a system the failure of any ciably misled by the independence assumption.
one of the components causes the system to faiL Lagakos (1979), in a study of the effects of various
Common assumptions made in modeling and ana- types of dependence among component lifetimes,
lyzing data from such a system are that the compo- notes that most methods of analysis have assumed
nent lifetimes are independent and exponentially dis- noninformative models of which independence is a
tributed. Many authors have considered the problem special case. He points out, -it is important to be
of analyzing a series system with exponential compo- aware of the possible consequences of making this
nent lives. For example, confidence bounds for system assumption when it is false" (p. 152). Furthermore, ._.

reliability assuming independent exponentially dis- Easterling (1980) states in his review of Birobaum's
tributed component lifetimes were presented in Mann (1979) monograph on competing risks, 'there seems to
(1974) and Mann and Grubbs (1974). (See Mann, be a need for some robustness studies. How far might
Schafer, and Singpurwalla 1974 for a more compre- one be off, quantitatively, if his analysis is based on
hensive review.) More recently, work invoking the incorrec assumptions?" (p. 131).
assumption of independent exponentially distributed In this article we consider the consequences of de-

* lifetimes has been presented by Chao (1981) and Mi- partures from independence when the component life-
yamura (1982). Estimation of component parameters times are exponentially distributed. Such departures
from series system data has been treated by Board- may be related to some common environmental factor
man and Kendell (1970) in the context of independent that is present only when the components are linked
exponential component lives. Some authors suggest a togcther in series. The load each component is subject
nonparametric alternative to the estimation of corn- to is either reduced or increased according to the age

" ponent reliability based on series system data (com- of the system. To study such departures, we have
t pare Kalbfieisch and Prentice 1980 and Lawless 1982). seteced a model proposed by Gumbel (1960).

The assumption of independence is essential to Gumbel's model retains the assumption of exponen-
these analyses and an important concern. Several au- tia,;% distributed component lifetimes while allowing
thors have shown that this assumption, by itself. is not the ;lexibility of both positive or negative mild corre-
testable because based on data from a series system. lation between component lifetimes.
Ihere is no way to distinguish between an independent The effects of a departure from the assumption of
and a dependent model. (See Tsiatis 1975. Peterson independent component lifetimes in a series system
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will be addressed for two distinct situations. The first Suppose that the actual joint distribution of IX,-
situation arises in modeling the performance of a the- X.) has the form proposed by Gumbl (1960). namely,
oretical series system constructed from two compo- P(XI > xt. X2 > x,) = [exp (-).,x, - A2 x",)]
nents whose lifetimes are exponentially distributed.
Here, based on testing each component separately or x [1 +1 -exp (- ,,xj)XI -exp (-A x2))]. (2.2)
on engineering design principles, it is reasonable to Thejoint probability density of(X, X2)is
assume that the components are exponentially distrib-
uted with known parameter values. Based on this f(x, x2) t-;. 2[exp (-Ax, -. 2x2 )]"
information, we wish to calculate parameters such as x [I + :(2 exp Ax,) - 1)
the mean life or reliability of a series system construct-
d from these components. In Section 2 we describe x (2 exp (- 2 x2) - 1)), (2.3)

how the values of these quantities are affected by where in both (2.2) and (2.3), x1 , x2 , A, ;, > 0,
departures from independence when the component - 1 < - I. This distribution has marginal survival
parameters are completely specified. In Section 3 we nIos e qu iv alen to hs r inaependentfunctions equivalent to those for the independent "i.
study the performance of the Mann-Grubbs (1974) model, which, in part, is the reason for choosing it.
confidence bounds on system reliability for small The correlation between X,, X2 is p = a/4, and a =0
sample sizes and for varying degrees of correlation, is equivalent to X1 , X2 being independent. For p > 0
when the component parameters are estimated from (<0) the components are positively (negatively) Fo p

component data. (< a rt e p nents ar owitidelro(neatively)

The second situation involves making inferences quadrant-dependent (see Barlow and Proschan 1975).Furthermore, the conditionfal expectation of X,, given.. ".'
about component lifetime distributions, reliabilities, Futhrm, t ""ea o g
and mean lives from data collected on series systems. X 2 - X 2

"

Commonly, data collected on such systems are ana- E(X I X 2 = x2) (1 + 2P - 4P eXP (--1 X2fl
lyzed by assuming a constant-sum model, of which A,
independence is a special case (compare Williams and If(X,, X 2) have the joint distribution (2.3), then the
Lagakos 1977 and Lagakos and Williams 1978). In true system reliability is
Section 4 we study the properties of the maximum
likelihood estimators of component parameters calcu- Fp(r) = P[min (X,, X 2)> t I dependence]
lated under an assumption of independent ex- -exp (-)! + 4p(l - exp (-tr))
ponential component lifetimes when the component
lifetimes are Gumbel bivariate exponential. Because of x (1 - exp (-- r))3. (2.4) --
the widespread use of nonparametric estimates of From (2.1) and (2.4) we see that the error in mod-
component reliability, we also present in Section 5 the
estimation error of the Kaplan-Meier (1958) estimator lngstmribiyi
when the assumption of independence is made er- () - F (t) - Fl(t)
roneously. 4 p[! - exp (-tt)ll - exp (-)z t)]

2. MODELING SYSTEM RELIABILITY FROM x exp (-( 11 + A-)t). (2.5)
COMPLETE COM PONENT INFORMATION Note that 1 A(t) I increases as I PI increases, for fixed A,,
Consider a two-component series system with 2, and t. The magnitude of A(t) of course, depends on

component life lengths X1, X2 . Suppose that X, has A,, ;-, t, and p. When A, A2 - 4, one can show that
an exponential survival function A() is maximized at t - (In 2]/# (fixing p and 4). The

value oflIAt)I at this point is IpV4, which is at most
1/16. Representative values of ra(t) for A, - 1. A2  -

A, > O, i 1, 2. l.S, andp- -. 25, -. 125,0, .125, and .25 are plotted
in Figure 1. The eurve with p - 0 corresponds to theThis assumption is made on the basis of extensive system reliability if the assumption of independence is

testing of each component separately or on knowl- true. Since most applications of interest involve relia-
edge of the underlying mechanism of failure. The bilities of.75 or greater, in Figure 2 we plot the ratio -
value of A, is assumed known. If X I, X2 are indepen- of the 100 pth upper percentiles under dependence and

*dent, then the time to system failure has an ex. independence versus the correlation. From Figure 2 it
ponential distribution with failure rate . = A- + 2 , appears that when the predicted system reliability
and the system reliability is given by under independence is greater than .90, misspecifying - -

141- Pmin (X, X0 > tindependence] the delendence parameter has little effect. In the range
where the predicted system reliability under indepen-

-exp I-.:). (2.1) dence is less than .75, however, misspecifying the de- - -
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UThe mean time to system failure based on (2.1, pendence and Independence Versus Coffelation for

assuming independence, isAl=12W .

andtht bse on~ l/A1 + A),(2.6) Ip I increases and is afunction of the relative sizes of A
and ;2 In particular, when the mean life of one coin-

adtabaeon(2.4) is ponent is substantially greater than the mean life of -

1 the second componentl then the behavior of the

11 + 'X2)system is well approximated by the behavior of the 0
shorter-lived component acting alone. This can be

341___ 1 1 seen in (2-4) and (2.7) by letting 1, -. 0. In this instance
L2(11 + 12) (21.1 + A2) (g+2)J we also see, from (2.5) and (2.8), that the amount of

*(2.7) error incurred by assuming independence is negligible.
3. ESTIMATING SYSTEM RELIABILITY

The amount of error in modeling system mean life is FROM COMPONENT DATA

- ~ 6p)A1A2  A common practice in predicting system reliability
1~"~(A + 2X2A +A2 AI +A 2)is to test each of the components independently and

then to use the data to obtain confidence bounds on

(2,+pzA, 2 A2) (2.) Table 1. Maximum Values of A (t) Ifor;., 1

(2A 1 A 2 XA -i-A2)'and Various Values of A2
whose absolute value obviously increases as I p1I in-

* ~creases. If A, - A2 , this error reduces to 2ppi/3, which A a 60
has a maximum absolute value of pi,16. 2 .056

it is apparent from Table I and Equations (2.5) and 4 .041

r(2.8) that the error in modeling system reliability and 8 .025
mean system life, based on indcpendence, increases as is .014
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280 M. L. MOESCHBERGER AND JOHN P KLEIN

system reliability. These bounds. obtained by Mann Table 2 Estimated Coverage Probabilities
and Grubbs (1974). assume that the component lifc- for Mann- Grubbs Bounds
times are exponential and that the components act (-,(, = I.0,A. = 15)
independently when linked in series. In the bivariate - .... . .. . ..

case the bounds are computed as follows: For thejth
component, suppose that mi prototypes have been n, ,,: -25 -15 -05 0 05 .15 25
tested until r, (<n,) failures occur. Let Zj be the total 9 90

tim ontes fo lbjt coponnt.Defne3 3 .90 67 40' 88.426 89.326
' 89.78 90.20 91-18" 92.15'

3 3 .75 71 036 72.53%
. 
74136 74.88 76.58 77.34' 78.81-

M (r - _ )/Z 1 5 5 .95 9319' 94.044 94.90 95.26 95.62" 96.171 9687'
(r(3.1) 5 5 .90 8712' 88.48' 89.85 90.39 91.10 92.13' 93.14'

5 5 .75 6968' 72.02' 74.10b 75.13 76.14' 78.32' 80.03'

and 10 10 .95 9203' 93.42' 94.58 95.08 95.51' 96.42' 97.14"
10 10 .90 85.93b 87.70' 89.34' 90.21 9106' 92.56' 93.93" At(rz + ('J- 10 10 .75 6777' 70.90' 74.12& 7563 77.05 79.87- 82.96•

V* r- Z +At lem two standad erats above specified level.
' At least two candard onats below specified level.

NOTE: Standard *erad of the above estimates are approximatety .2 for thekn approximate -,-level lower confidence bound for 9swe.3, o, ., ,orw. ,,." .
.95 leve. .3 for the .90 level, and.4 for the .75 leve).

iystem reliability at time t,, is

exp [-g,,M*{l - V*/(9MeZ) + q,(V*)ll/(3Me)}3], reliability at r is an increasing function of p so thatasymptotically coverage probabilities approach 0 (or
(3.3) 1) for p < 0 (>0). For sample sizes in the range of 3 to

,'here q7 is the 1007 percentile of a standard normal 10, the estimated coverage probabilities for p < 0 areandom variable. statistically significantly lower than expected. On theWhen the system being evaluated has dependent practical side. however, they are not of sufficient mag-
Wpnnt theysem bein misluteadinTet nitude to cause great concern, especially at " = .95.:omponents, these bounds may be misleading. The

)roblem is that component data are independent, 4. PARAMETRIC ESTIMATION OF
;ince the components are tested separately, but when COMPONENT PARAMETERS
hey are put together into a system, some interdepen- In this section we are interested in examining how
lence may develop. Of course, such dependence is not
:ietectahle in the absence of some system data, since the independence assumption affects the magnitude of
the data on compients we see are independent. To the estimation error in estimating component mean

study the performance of the bound (3.3) when the life from data collected on series systems. That is, for
ttud th peforanc ofthe oun (33) henthe each system tested, we observe its failure time and an

* correct system model is the Gumbel model (2.2), a
simulation study was performed. For each simulated indicator variable that tells us which component
sample, ns observations from exponential populations caused the system to fail. We are interested in howawith mean 1/2t, j = , 2. were simulated. The two varying degrees of dependence affect the bias and
samples were generated independently. The confi- mean squared error (MSE) of the maximum likeli-

sampes ere eneatedindpendntl. Th cofi- hood estimator of component mean life obtained bydence bound (3.3) was obtained. This was then com- assuming independent component lifetimes. --

pared to the true system reliability at various p's assum ependent component s.We assume that the two components' survival func-obtained from (2.4). Ten thousand such bounds were
simulated for each set of parameter values. The esti- tions ar F't) - exp (-,;. t), i - 1, 2, and a life test is
mated coverage probabilities for the Mann-Grubbs conducted by putting n systems on test. We observe n,bounds (i.e., the proportion of times that the Mann- systems failing because of failure of the ith component.

bouds i~e te popotio o ties hatth Mn - 8 1. ZLet T denote the sum of all nz failure times.-Grubbs intervals assuming independence actually F Moeschbene and Dai (7 the aximum
contained the true system reliability) for m t - n, - 3, From Moeschberger and David (1971). the maximum
5, 10, ,., - 1.0, ,= I, 5, at t,, = .1 are reported in likelihood estimator of ., assuming independence. is
Table 2. Here the true system reliability under depen- = nj1/T. i 1, 2,

dence ranges from .7684 at p= -. 25 to .7891 at
p = .25, with a value of.7788 ;t p .0. so the estimator of component mean life, p = .- 1. is

The results in Table 2 show that at high negative T/n1 if n, > 0. (4.1)
correlations, the coverage probabilities are signifi- 

-. .>-

cantly lower than claimed under independence, and Now suppose that we are in fact sampling from 'he
for a high positive corrclation. the intervals are con- Gumbel distribution (2.3). For this model, componcnt
servative. This trend beconte. more exaggerated as it,. mean life is the same as in the independent case. The
n2 increase because the bound approaches the reliabil- random %.ariables Ini, "F) are independent Ithe con-
ity under independence. A, .ecn in Section 2. the true ditional di.%tribution of T given ii, is free of,t,i. and n,. is

% . . . . . . ..• .. .
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DEPARTURES FROM INDEPENDENCE IN SERIES SYSTE:.S 2810

hifllil i il parimL'ters Di and p, :z I'(rin (XA,. kaU(ion am!,. fo'l~1.?. ,r la.rge n. aproaching tile
X X). For this modcl, limit of 2Z'p1 3.

< - ~~Whn, ':-20

~. (A + 1X2, +;.~., 2A)} MSE Ifi I JjD - n __31 _2182_n____

+ + + +n~n- 5 P # 31 9nin - 5XIn - 3)

(42)X (19n - 21ii + 2(n -- 3Xn - lip-;. (4.111

with pz = I - p,. From Mendenhall and Lehman As in the bias expression, thc MSE reflects a sampling
(196%) approximations to the moments of l/nj, con- error term and a modeling error term. The modeling
ditional on n, > 0. arc error is a quadratic function or 1; for fixed n. For

n-2 n > 5. this error is increasing in p for
E(t/n, In, > 0) -n(a-I1) (4.3) 1 1191-21)

and ~' 4 (n - 3)(n -I1)

n - 2n- 3) ) and decreasing in p for
E ~ l ~ , I n > 0 n 2 ( _ 1 a - ) ' ( .4 )I ( 1 9 n - 2 1 )

where a = (n - l)pi. The expected value of T is given p <, (n - 2Xn - I)*
by ny0 , where PD is given by (2.7). and

r(2 2 + l0p 8/ For sample sizes between 5 and 21, the modeling
E(T)= ~*+ A)2 

-8p(error, and hence the MSE. is a strictly increasing
(; + \.(2,+A) function for all p e -. . For n > 21, the mini-

mum MSE is achieved at p < 0. As n approaches oc,
+ 2~)I +n~n- 1)4. (.5) the value at which the smallest MSE occurs tends toO0.

(i~ A~,jFor unequal component means a similar result
Thus, the bias and MSE of J2i, conditional on n1 > 0, holds. Figure 3 shows the bias as a function of p for

3 under this model are

(n -2)p 0
E(A -pPJ (4.6)

and

MSE (j~ E(T )E(l/In'In, > 0)

+p? (4.7)

for i 1, 2.
We note that for large samples

lim B(j -1 - p (4.8)

lim MSE (fj2~ -= i B(A2~) (4.9)

* (or i 1, 2. For A A2 from (4.6). we see that

B(2 I + 2(n - 2)p/3 C____

(na - 3)

All 2(n - 2pt

n-3 3(n -3) (.0

A similar expression holds for 8(A2 ). Note that (4. 10)1.consists of two terms. The first term. reflecting sam- -0? 0.17' bG .0 cc '08 0
pling error, is positive for all n and dominates the bias ORLIN

expression for small na. The second term, reflecting Figure 3. Bias of 9, Under Gumbel's Model for
modeling error, takes on the same sign as the corre- 1~=7..: 15.
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o conditional survival probabilities, namely, by

f()I if X < Xi~)

=i H1 - rj+1

where jfl, x) is the largest value ofj far which x, < x.
A special note is needed to cover the case in which
x,,. is not the largest observed death. To avoid this
problem, we shall define Fj(x) =0 tar x greater than

Ex the largest observed failure time.
If the component lifetimes in fact follow the3C Gumbel bivariate exponential, we can see that the -

Kcaplan-Meier estimator is not consistent. For i = 1,
the Kaplan-Meier estimator is not estimating F1(r),
but, rather, another survival function, J? j), given by

-x A -, f (+4p(l -~u1e~ du

t >0. (5.1)
-0.21 *0.1Is -0.05 0.05 0.AS 0.2s

CORRFI ArION Note that if A, ) 2  0 ,(5. 1)is simplified to

Figure 4. Ratio of IMSE (A~ I p)/MSE (A, 1p 0) 9,(t) e-'[I + 4p(l - e-# 2 112, (5.2)
forVarousSamle zesn nd or ~ =1, = 5. which is increasing in p. Similarly, rfQ) is actually

estimating J72(t), which is defined analogously.
various sample sizes when A, 1.0 and A., = .5. Measures of the error in estimating P,(t) by Fi(t) are

* Figure 4 depicts the ratio

/M-SE (A) Ip)/MSE(A 1 p 0) 0

* as a function of p for various sample sizes when A,-
1. A2 = 1.5.

5. BIAS OF THE PRODUCT 1
LIMIT ESTIMATOR C;

A second approach to the problem of estimating ...........
component parameters is via the nonparametric esti- C
mator proposed by Kaplan and Meier (1958). Investi-
gators who routinely use nonparametric techniques 4n.0- - -

may take this approach in hopes of obtaining esti- 73
p mators that are robust with respect to the assumption

of exponentiality. The purpose of this section is to
show that such estimators are not necessarily robust
with respect to the assumption of independence when
the marginals are, in fact, exponential.

The product limit estimator, assuming independent
risks, is constructed as follows. As before, suppose n -

systems are put on test at time 0 and nj systems fail
owing to failure of component i. Let X 1 ), ..., Xi,
denote the ordered times at which these ", events
occur, and let ,,...... r,., be the ranks at those ordered 0.1 OS 1,0 01.5 00 ,K .so 3.00

survival times among all n ordered lifetimes. The comn- liME

ponent reliability for the ith component at time x may Figure 5. Bias of Kaplan-Meier Estimate, F,(t). _

now be estimated by the product of the individual I1 =1.;.,= IS.

TECHNOMETRICS f., VOL. 26, NO. 3, AUGUST 1984
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the bias and MSE of i',(gj computed under the dcpcn-
dence model. Under this model. thc Kaplan-Mcicr
estimat'or is equivalent to the estimator onc would
obtain based on n observations from an independent
system with component survival distributions I?i
given by (5.1) or, if A, A.by (5.2). Hence from -

Kaplan and Meier (1958), the variance of f5(:) is given
by dG()I (3 f

~J R(u)2

Thus from (5. 1) and (5.2), the bias and MSE of.Fj(t) are 6

=(i~) 17M) - F.Q. r 0, (5.4)
and

+ 1i(olt> .(55

The estimator is not consistent, since B(j'~t)) is inde-
pendent of n and not necessarily zero. Also, MSE C
(F5(t)) consists of a factor that depends only on the
model error and is free of sample size and of a term
that tendsto 0asn tends to infinity. N'0 0.30 1.o0 1.so tioo i.SO 7,00

Note that in the case of equal component lifetime TInE
distributions, 1, = the bias determined from Figure 7. MSE of Kaplan-Meier Estimate, F, (t).
(5.2) and (5.4) simplifies to A=1 . ;. = 1.6,n = 50.

e-'{[1 + 4(1 - e-#)2]112 1)l. (5.6)

0 In the general case, the integral in (5.1) needs to be
C;' evaluated numerically. The bias of the Kaplan-Meier

estimator was calculated for various values of ;, and
p. A representative plot of the bias appears in Figure

5, Where ; 1 =I, ;2 = 1.5,and jpj - 0, .125. -M5. It is
apparent that the bias is largest for values of t in the

* neighborhood of an interval that captures the mean
Coo, component lifetimes. The absolute value of the bias

ranges from 0 to .11I in this example.
.CP MSE (f1(t)) was calculated for various values of 11

m, and p. Its magnitude is typified in Figures 6 and 7,
o where .',= 1, ; 2 = 1.5, and n = 10, 50, respectively.

For A=1, ) 2 - 1.5, and n = a-, MSE (Fet)) may be
obtained by squaring (5.4) or by squaring the ordinate
values in Figure 5. The MSE of the Kaplan-Meier

o estimator may be quite large for small sample size nt
Iand moderately large for "large- p. the former being a
more crucial factor than the latter.

6. SUMMARY

* The results presented here show that for the
Gumbel model, one may be misled by falsely as-
suming independence of component lifetimes in a

T0 1'.* 7.0 -j.. .0 series system. In modeling system reliability based on
6.I" complete information about two marginal component

Figure 6.MSE of Kaplan -Meier Estimate, P(t), life distributions, effects of erroneously assuming indc-
I 5.n -10. pendence of component lifetimes is most pronounced

TECHNOMETRICS C.VOL 26 NO 3. AUGUST 1984
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Abstract

The problem of testing for independence of the component lifetimes

when the components are linked in series is considered. To avoid the

problem of nonidentifiability the marginal co onent lifetimes are assumed

* to be known. In this setting a modified version of Kendall's Tau is

*I proposed. This test statistic is obtained by replacing those conponent

lifetimes which cannot be cbse-ved, due to sysz - e bf n -, --b-

probabilities computed under independence. A small scale siru.!ation study

of the power of this test shows the test has reasonable .;er for relatively ,

small sample sizes. ,... -

K<ey Words: Series Systems; Test for Independence; Kendall's Tau;
Exponential Distribution.
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i 1. DEPEN2f SYSTLMsS

A ca ion assumption made in modeling series systems is that the

component lifetimes are statistically independent. This assumption is

also routinely made in analyzing data collected f.<n series systems.

Recently, Klein and Moeschberger (1983) and Moeschberger and Klein (1984)

NO have shown that one may be appreciably misled by this independence

assumption for certain bivariate exponential systems.

To illustrate the effects of this independence assumption consider

the following two models for the joint surival function of the component

lifetimes (X,Y). The first model, due to Oakes (1982) has joint survival

" function

H(x,y) ?(X>x, Y>y) 1 [{l }4l.lr..L e >1 (.)

" where (-), G(') are the marginal survival functions of X and Y respectively.

m This distribution has a coefficient of ccncordance -= (8-1)/(8+1) and .

8 1 corresponds to independent compcnent failure times. If X(xlY=y) and

• A["(xlY>y) denote the conditional hazard functions for the conditional

distributions of X given Y y and given Y > y, respectively then S

A(xIY=Y) 8 X(xIY>y).

A second model, due to Gumbel (1960), has joint survival function

tCxy) : (x)GCy)[l+(l-r(x))Cl-(y))], - 1 < a < 1. (1.2) p

This model has coefficient of concordance r : 2 a /9 which, unlike the

Oakes model, may be both positive and negative.

L. To illustrate the importance of the independence assumption in

modeling the system life consider figures 1 and 2 where the 95th and 99th

.-.. ..-.....

-. * . *. % .|
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percentile of system life is plotted for the -.4 models ,,'ith exponential

marginals. Here in all cases the first compcn-nt has u,.*- mean life. For

the Gumbel model the true percentile ranges frm 80% to 115% of the

percentile computed under independence, while in the Oae-:es model the true

percentile can be as much as twice as big as -:.e percentile computed under

independence when X2 A1 and as much as 1.5 -i7e as big whe-n 12 = 2.

Since one may be appreciably misled by arroneously assuming independent -

component lifetimes it is desirable to test this hypothesis based on data

from series systems. However, if no assumptions about e underlying

distribution of the component lifetimes is mate such a test is impossible

due to the identifiability problem (see, e.g. Tsiatis (1978), Miller (1977),

Basu and Ilein (1982)). This is, given any set of observable information

(such as syste-k life, crade sys--e l"e, etc. coilecec fr-, , a series

system with dependent component lifetimes, there exists a series system

with independent canponent lifetimes with the same obse-.'able information

(see Langberg, Proschan and Quinzi (1981)). However, th's comparable

system of independent random variables need not have the same marginal

component life distributions as the dependent sxructure. In particular, the

marginal distributions of the two systems are the same only for the class of

constant sun models defined by Williams and Lagakos (1977).

In the next section a modification of Kendall's (133) test for

independence is proposed. This test assumes -hat the marginal component

life distributions are completely specified. This infc.r.ation could be

obtained by testing each component severatei.. as is of-en done in the

development stages of system design (see. e. . Easterli--i and Prairie

(1971), Mastran (1976), or Miyamura (1982)). In secti-n 3 a simulation

- ..-, .,: . ..- .... . . .. .. .... 



study compares the power of this test to the paeraetric tests based on

Oakes and Gumbel models. 0

2. THE TEST PROCEDURE

Suppose that n two component series systems are put on test. Let

Xi' Yi denote the potential (unobservable) failure times of the first and

* second components of the ith system. We are not allowed to observe

(Xi, Yi) directly, but instead we observe Ti = .nin(Xi , Yi), the system

failure time and 11 if Ti = X. , the cause of the system failure.

if Ti = Yi

Also suppose that the marginal survival functions of Xi and Yi, F(x) P(Xi>x)

* and (y) = P(Yi>y), i 1,...,n are known.

If we could observe both Xi and Yi then a test of independence, due

Kto Kendall (1938). is to count the nuirrer of cocordan.t pairs and the nL xber

*of discordant pairs. A pair (XY~ MX, Y.) is concordant if X. X.

and Y-Y have -the same sign and is discordarz if these differences have

* different signs. The test statistic is then the number of concordant p
pairs minus the number of discordant pairs.

If the data comes from a series system then only Ti, I i is observed.

Suppose we consider a pair (Ti , Ii), (T I) with Ti < T. If I. = 1 and

I.: 1 then we know that Xi  Ti < X. = T., and X. < Yi X. < Y.- This

pair would be concordant, regardless of the value of Y., if T. < Y T.

If Y- > T. concordance or discordance depends on the value of Yj. Under the
1L J J p

null hypothesis of independence, the conditional probability that the

pair is concordant is [;( i ) - IT )]/G(T) ?(T i < Y < T. Y > Ti ) since

average concordance over the range Y > T. is 2. When I i  1 and I 0

then Ti  Xi < Y= T., X. < Yi Y < X. Here if T i < Y. < T. the pair
j- o. N°

.. . . . .. . . . .. . . .. . ...... ... . y_.... .. .,,, %.. V..
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would be concordant and if Yi> r the pair w:=d be discordant, whatever

the value of X Under independence the ccnz-ional probabilities of these

two events are [!(Ti) - G(T.)]/(T i ) and G(T,; 'T), respectively. Should

Ii = 0 similar probabilities, involving 7, cc d be obtained. This

motivation suggests the following score functin for Ti < T

[ (Ti)-G(T.)]/_(T i ) if I. Il = I

[T(Ti)-F(T)]/F(Ti) if Ii = I. = 0
1 2.1 )
= (2.1)

1 31 I) [1(Ti)-2(T.)]/G(T:) if Ii  1, I 0

[RT()-2_(T.)]/T(T.) if I* 0, 1 1

* and similarly for T. > T..

The modified version of Kendall' s test s-atistic is
T = P(T ,i,T,,',(1 ). (2.2)

1<i<j<n 11 j

'To find the moents of T, under indepen ence, consider the pairs

(Tl, 1 , (T2 , 12). Let A1 = {T1 < T2 , I1 = :2

A2  {T1 < T2, I1 = l, 12 0}, A3 =T 1 < T2 , 1  0, 12 0) and

A 1 T 1 <T 2 ,1=0, 12  1. In ten of; heunobservable component

lifetires, (x, Yi), A1  'x1 < x2, x1 < Y1  "2  2'

A2 = (X < Y2 xi < ,1, Y 2 < X), A3 = {Y < Y 2, Y1 < X1, Y2 
< X21' and

A4  ( 1  XY XX 2 <Y. Since, by s='=zetryvT, is equally likely

to be either smaller or larger than T2 we ha.'

-, '. % *** *~* **~. *- :u:;L L:L :.~~§.::: ::: -;



~~ E(41(TIT I)) = ff (x )-?;(x2)d~~Fx)GY d~

1 2*

+Ml'V ( 1 -2( 2 dFFx1)d)x2)dGC 1)dGCY2

U2 f(x)
+ J(y)Ty)dF(x1)dF(x2 )dG~yl)dG(y2)

AA

+ J2  {JCy)- (y ) ()dFCY2)dG+ J [C(x)2() ]FYdC)d~) C.
A xyl

+~-)VT d ~x)x2 )d+ ()dG()

A 4 JF(xYI))~y dGydFx

j +j + X)jXGY(sy)d(~GX

+ Lf()-?(y- 2J (x))dF( X) + g x)7)]Fydy)Fx- (2.5)

t.-- seon ine ntga + 0.x d rcx) wr FC x) = t - x

;fJf~x2Gx) 2X) 3 FX) G
andlV( GF~x) + C)

3 3
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The asymptotic nornality of T follows by the results cf HoeffdL-,g (1948).

Hence, a test of independence versus dependence rejects if IT/¢,'(T) is

greater than the appropriate percentage point of a stnda-rd nor-r! random

variable. A test of independence versus positive dependernce rejects if
S6 is too large.

The variance of T (2.5) can be e.xr .essed explicitly L- see.eral cases.

Case 1. f(x) = G(x). In this case (2.5) reduces to

4n+7
V(T) =3Cn(n-l) (2.,3)

Case 2. (Lehmann structure) F(x) = (x)e. Here 2.5) re duces to

n(n-l)V() -8[3SSa + n(92 +2a+9)]= 3(3a+!)(3+a)(2aL+3)(3Y+2) (2.7)

Case 3. (X, Y exponential), T(X) e- x, G(y) e- , ten (2.5).

reduces to

^ 8>,e[35;5 + (2,,2,e,'..) (2.E)

n(n-l)V(r) 3(3X+6)(X+36)(2X+3)C'X+2e)

When the true values of F, g are risspecified th?_n E(f) is not zero.

If the true canponent lifetime distrib--tions ar-e T, Z 't :, Gare used in --

formula (2.3) then one can show that, -under independeice,

E( ) 2(1-8)1 G f (y)ZG ( ) -. W
(2.9)

+ 2(l-)f(y -.(x), S > 0.

If C.) U(.) then E(?T) = s-]. + ,-1 . "

if FWx G (x) then E(T) e --8

. Similar expressions can be obtained for the null var-_=-ce o: .

=.-



3. SIMULATION STUDY

To study the effectiveness of the -.. i Kendall's r described in

section 2 a simulation study was conduc-4.d. The s-udy was jerformed by

generating 1000 samples of n 20 or 40 Series Systens with exponentially :-'

distributed component life times, F(x) =e- x and G(y) = e-X2y, X2 
= 1, 2. S

Both the Oakes joint distribution (1.1) the bivariate Gunbel distribution

(1.2) were used. The bivariate observa-*ns frcar the Oakes distribution

were generated using the technique describedA in section 2 of that paper.

To generate Gumbel random variables with :arginal survival functions

F(x), ?Cy) let U1, U2 be independent unif:rn random deviates. Note that

F(xJ y) P(X>xl Y=V) F(x)(l+a-2cT(y)) - ac(x) 2(l-2(y)). (3.1) 5

Let U1 =(y) and U2  F(xJ y) F(x)[I .- 2-U1 ] aF(x) (l-2Ul).

Solving this equation for (x) yields

SF(x) U: (l+r.(1--2 ))2 + 2a(1-2U1)(1-2U2 1  (3.2)

2c~i-2UI ) , UI1 1/2

which is the root which lies inthe inter-a! [0, 11. If U1  1/2 then U= U2 .

The pair (X, Y) is then found by X -(U'), Y 1-(UI).

For the purpose of comparison the .arametric tests for independence,

- based on the efficient scores statistics. for the Gumbel and Oakes model

- were obtained. Consider first the Gumbel model (1.2). Using the notation

in section 2, the observable crude densiry for T 1 is

-d P(T>t,I=l) ql() f~t) (t)[l+(!-F(t)-2 (t) + (t) (t))]

d
where f(t) -d Y(t), and a similar excrxession for q0 (t) when I = 0. Based

at
on a sample of n series systems the lie-'.od function is

nL(a) (t.) (3.3)

JI
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Z : ( IC(.T ) + (1-I), 2 T. + E +A X

(2nA 
X

which is approximately standard normal for larg n when 1. .

The results of this study are reporte i, table 1. From this table

it seems like the modified T test has reasonably good power when compared

to the parametric tests, although comparison with the Oakes score test is

hard since the significance level of that test is inflated. Also the test

based on the Gumbel scores has comparable power when the data is from the

Oakes model. A test for normality done on the samples where the compcnents

were independent accepted the normality assumption for the modified T test.

Table 2 reports the observed number of rejections when the component

parameters are estimated based on independent samples of size 50 for each

component. A .05 significance level was used. Here, when A1 = X2, all tests -

have inflated levels. When x te tests are conservative. All tests

rave comnpdrable power when A1  A 2, however the modified r test has signi-

ficantly higher power when Al X A2.

In addition to the power of our modified test the E(T) was estimated

for each sample. Except in the independence case the simulation showed

that E(T) .35, suggesting T is of limited use as a point estimator of T.
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TABLf I .;;timit._d ou tk; lg Tru'. _ ; .10.
-- 5 Bai ',d , 1 'JL0 Repli mt P..:

MODIFIED T u OAS SCORE ;UMBEL SCURE,

MODEL ?,:.05 .:.025 It:.0S x:.025 j=.05 a:.025

lndeptrident (A :1) 2o , 50 25 71+ 52+ 58 37

Independent (0 2:1) 4Q 3 42 21 57 34 54 36

ndependent (X 22) 20 0 53 25 714+ 52+ 62 34

Independent (A 2:2) 40 0 55 32 74+ 49+ 69 37

-umbe1 (A 2:1) 20 .125 99 55 115 88 133 78

Gumbel (X2 z1) 40 .125 158 96 159 124 192 124 5

Gumbei (A2 :2) 20 .125 119 74 L2 88 l1 100

Gumbel (X2 2) 40 .125 158 88 146 ill 176 116

Gunbel (A2:1) 20 .222 182 117 172 130 245 175

Gumbel (X2:1) 40 .222 283 199 239 179 323 257

Gumbel (A2 :2) 20 .222 188 110 160 130 205 143

Gumbel (X2:2) 40 .222 279 181 221 159 316 237

Oakes (=1) 20 .125 170 114 236 202 184 137

Oakes ('2:) 40 .125 22L. 154 327 273 247 185 .

Oakes ( =2) 20 .125 166 101 231 207 179 125

Oakes (02:2) 40 .125 228 148 313 253 248 166

Oakes (Y=l) 20 .25 318 243 421 377 379 295

-* Oakes ( 1k.:) 40 .25 484 394 614 551 510 443 5
Oakes (32:2) 20 .25 334 223 386 335 354 273

Oakes (.:2) 40 .25 513 338 555 483 522 407

Oakes (=1) 20 .50 638 535 704 670 680 606

. Cakes ( I) 40 .50 880 802 903 875 881 851

Oakes ( ,:) 20 .50 657 589 615 5147 674 593

Oakes ( 2:2) 40 .50 894 823 916 772 873 820

" Oakes (X2 :1) 20 .75 799 722 803 763 858 795

Oakes (Y:1) 40 .75 973 946 983 968 925 900

Oakes ( :2) I' .75 899 47 699 631 823 763

Oakes (, :2) 40 .75 995 989 924 884 385 961
z .
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L..I Yi i! f T R ep .i ', t i,)I:

MODIFIED T OAKES SCORE GUMBEL SCORE

MODEL n a:.05 cx:.025 ,L=.05 -x:.02S =:.05 cx=.025

Indepfendent (A 2:1) 20 ri 50 25 71+ 52+ 58 37

Independent (X2:1) 40 0 42 21 57 34 54 36

Independent (X =:2) 20 0 53 25 74+ 52+ 62 3.4

Independent (A 2 =2) L0 0 55 32 7+ 49+ 69 37

Gumbel (X,2 =1) 20 .125 99 55 115 88 133 78

Cumbel (X2:l) 40 .125 158 96 159 124 192 124

Gumbel (X2=2) 20 .125 119 74 128 88 141 100

Gumbei (X2=2) 40 .125 158 88 146 ll 176 116

Gumbel (X2 1) 20 .222 182 117 172 130 245 175

Gumbel (X2 :1) 40 .222 283 199 239 179 323 257

Gumbel (X2 2) 20 .222 188 110 160 130 205 143

Gtjmbel (X2 2) 40 .222 278 181 221 159 316 237

Oakes (> 2 :1) 20 .125 170 114 236 202 184 137

Oakes (X-1) 40 .125 224 1S4 327 273 247 185

Oakes (X=2) 20 .125 166 101 231 207 179 125

Oakes (}2=2) 40 .125 228 148 313 253 248 166

Oakes (X:1) 20 .25 318 243 421 377 379 295

Oakes (y2:1) 40 .25 484 394 614 551 510 443

Oakes (X:2) 20 .25 334 223 386 335 354 273

O Oakes (=2) 40 .25 513 338 555 483 522 407

Oakes ( =1) 20 .50 638 535 704 670 680 606

Oakes ( 2=l) 0 .50 880 802 903 875 881 851

Oakes ( X=2) 20 .50 657 589 615 547 674 593

Oakes (\=:2) 40 .50 994 823 816 772 873 820

Oakes (X=i) 20 .75 799 722 803 763 858 795

Oakes (=1) 40 .75 973 946 983 968 925 900 P

O akes ( 2 :2) 20 .75 899 847 699 631 823 763

Oakes ( =:2) 40 .75 995 989 924 884 985 961

t
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TABLE 2 E:timated Power Usinyg L ~timatc, .-it ,ilUter Valei. s

:rod 0. fly -, ignificance Iyve] .

Modified T lakes Score Gumbel Score

MODEL n T: )22 X- X= x = 2
1 2 1 22

Independent 20 0 82 18 1 89 1

Independent 40 0 64 17 83 1 81 1

Gumnbel 20 .125 136 42 141 3 159 4

Gumbel 40 .125 214 30 200 3 242 4

Guxnbel 20 .22 209 68 201 6 255 10

Guinbe. 40 .22 331 62 276 10 360 9

Oakes 20 .125 202 48 263 40 211 8

Oakes 40 .125 276 54 354 13 284 1

Oakes 20 .25 327 146 430 55 388 29

Oakes 40 .25 513 156 628 48 542 20

Oakes 20 .50 638 400 699 93 655 92

Oakes 40 .50 858 558 827 99 865 102

Oakes 20 .75 781 737 793 76 828 84

Oakes 40 .75 956 916 947 112 962 138
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BOUNDS ON NET SURVIVAL PROBABILITIES

FOR DEPENDENT COMPETING RISKS

.- by

John P. Klein and M. L. Moeschberger
Department of Statistics Department of Preventive Medicine
The Ohio State University The Ohio State University

SUMMARY

Improved bounds on the marginal survival function based on data from a

competing risk experiment are obtained. These bounds are obtained by specifying

[.a range of possible concordances for the risks. These bounds are tighter than

those of Peterson (1976). A comparison to other existing bounds is also made.

k

Key Words: Competing Risks, Product Limit Estimator, Net Survival Function,

Coefficient of Concordance.
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, w I. INTRODUCTION

A common problem in survival analysis is to estimate the marginal

-. survival function of the time, X, until some event such as remission,

component failure, or death due to a specific cause occurs. Often obser-

vation of this main event of interest is impossible due to the occurrence

of a competing risk at some time Y < X, such as censoring, failure of a

--different component in a series system, or death from some cause not

related to the study. Standard statistical methods, which assume these

competing risks are independent, estimate the marginal survival function

by the Product Limit Estimator of Kaplan and Meier (1958). This estimator

has been shown to be consistent for the marginal survival function by

Langberg, Proschan and Quinzi (1981) when the risks follow a constant

sum model defined by Williams and Lagakos (1977). When the risks are

not in the class of constant sum models, the Product Limit Estimator

is inconsistent and, in such cases, the investigator may be appreciably

misled by assuming independence.

... - - , . . .
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2

In the competing risks framework we observe T minimum(X,Y) and

I X(X < Y) where X(-) denotes the indicator function. Tsiatis (1975)

and others have shown that the pair (T,I) provides insufficient information

to determine the joint distribution of X and Y. That is, there exists both

an independent and a dependent model for (X,Y) which produces the same

joint distribution for (T,r). However, these "equivalent" independent

and dependent joint distributions may have quite different marginpl

distributions. Also, due to this identifiability problem, there may be
'a

several dependent models with different marginal structures which will

yield the same observable information, (T,I). In light of the consequences

of the untestable independence assumption in using the Product Limit

estimator to estimate the marginal survival function of X, it is important

to have bounds on this function based on the observable random variables - .'.

(T,I) and some assumptions on the joint behavior of X and Y.

Peterson (1976) has obtained general bounds on the marginal survival

function of X, S(x), based on the estimable joint distribution of (T,I).

Let Ql(x) = P(T > x, I = 1), and Q2 (x) f P(T > x, I = 0 ) be the crude

survival functions of T. His bound, obtained from the limits on the joint

distribution of (X, Y) obtained by Fr~chet (1951), is

Ql(x) + Q2 (x)< S(x) <,Ql(x) + Q1 (O). (1.i)

Since these bounds allow br any dependence structure, they can be very wide

and provide little useful information to an investigator.

Fisher and Kanarek (1974) have obtained tighter bounds on S(x) in S

terms of a dependence measure 01. Their model assumes that simultaneous

* . . -- ~.* *.~.. *•*.•"- %
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to the occurrence of Y an event occurs which either stretches or contracts S

the remaining life of X by an amount associated with ct. That is,

P(X > xIY = y < x) = P(X > y + ot(x-y)IY > y + ct(x-y)). A large oi, for

example, implies that a small survival after censoring is the same as n-times S

as much survival if censoring was not present. They show that if ci is assumed

known, then the marginal survival function can be estimated from the

observable information. Also these estimates, Sot(x),are decreasing in a.

For their bounds, the investigator specifies a range of possible values

aLOL < C u  so that S (x)< S(x) < S CLx).

Recently, Slud and Rubenstein (1983), have proposed general bounds.

They show that knowledge of the function

P (x) = Lim P(x < X < x +61' > x, Y x)

6-0 P(x < X < x +6fX > x, Y > x)

along with the observable information (T,I) is sufficient to uniquely

determine the marginal distribution of X. These estimates Sp(t) are

decreasing functions of p for fixed x. Their bounds are obtained by

specifying a range of possible values p (x)_ _(x) < P2(x) so that if

P(x) is the true function S0 2 (x) < S(x) < S0l(x).

In this paper we obtain different bounds on the marginal survival

function by assuming a particular dependence structure on X and Y. These

bounds are functions of the observables (T,I) and a familiar dependence p
measure, the concordance probability between X and Y. In Section 2 we

describe this model in detail. In Section 3 we derive the bounds and show

consistency when the dependence parameter is known. In section 4 these

bounds are compared to those obtained by Peterson, Fisher and Kanarek,

and Slud and Rubenstein.

.... .. ... ....... '..... -....... '. .v ..'''. """. ." ......
. . . .. ... . . t--* . . . . * 5,,. 5*, & ... ,, ' ' ' '. . .*.' .. ' -... . . . , * . ,
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It. THE MODEL 0

The dependence structure we shall employ to model the joint survival

was first introduced by Clayton (1978) to model association in bivariate

lifetables and, later, by Oakes (1982) to model bivariate survival data. W

Let S(x) - P(X > x), R(y) = P(Y > y),with S(O) = R(O) = l,be the

continuous univariate survival functions of the death and censoring times,

respectively. For e > 1 define F(xy) = P(X > x, Y > y) by

F(x,y) = [{y(x) + { - (2.1)

This joint distribution has marginals S and R. As 6-1, then (2.1) reduces

to the joint distribution with independent marginals. For e-,F(x,y) -.

min(S(x), R(y)) the bivariate distribution with maximal positive association -

for these marginals. The probability of concordance is 6/(e + 1) so that

Kendall's (1962) coefficient of concordance is T = (e - 1)/(8 + 1) which

spans the range 0 to 1.

This model has a nice physical interpretation in terms of the

functions A(xIY = y) and X(xJY > y), the hazard functions of X given Y = y

and X given Y > y, respectively. From (2.1) one can show that

X(x(Y = y) f  x(xY > y)

or

P(X > xlY = y) =[v(X > xIY > y)]. (2.2)

For $ >1 the hazard rate of survival if censoring occurs at time y is

0 times the hazard rate of survival if censoring does not occur at
_o

time y. This implies that the hazard rate after censoring occurs is

AD .
S- a.- .s~-. . . . . . . . . .... ** *.~S.*. . . . . . .
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I accelerated by a factor of 8 over the hazard rate if censoring had not

occurred. Also when e = 1, (2.2), reduces to the condition required by

Williams and Lagakos (1977) for a model to be constant sum and hence for

-- the usual product limit estimator of S(t) to be consistent (See Basu and

Klein (1982) for details).

Oakes (1982) also shows that (2.1) can be obtained from the following

random effects model. Let S*(x) = exp {- - and let R*(y) be
SWx

similarly defined. Let W have a gamma distribution with density

6-i -w
g(w)ciW e and conditional on W w let X,Y be independent with

survival functions {SIx)}w and {R*(y)}W. Then, unconditionally, X,Y have

the joint survival function F(x,y) given by (2.1).

For fixed marginals S and R the joint probability density function,

f(x,y), can be shown to be totally positive of order 2 for all e > 1.

This implies that (X,Y) are positive quadrant dependent. In particular,

one can show that for S,R fixed the family of distributions

F = [F(x,y): e > 1} is increasing positive quadrant dependent in 0 as

defined by Ahmed, et al. (1979).

-. *.. .-.. -..- .. *.. .-.. . *. %*** *.--.-.-..,
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III. BOUNDS ON MARGINAL SURVIVAL

Suppose that X and Y have the joint distribution (2.1) and let

T =min (X,Y), then the survival function of T is

1 6-1 1 0-1 _1

F(T) = L] + IT(- 1] 6-1 (3.1)

P* and the crude density function associated with X,

q (t) ~.P(T < t, X < Y), is given by

=lt s(t) fFtP (3.2)

se(t)

where s(t) =-dS(t)Idt.

Now consider the differential equation

s(t)/56 (t) q q(t)/ [(t)p (3.3)

and suppose e is known. Then the solution of (3.3) for S(t) is

S (t) 1 [ + (6-1) q() du]-01 if e 1l
I F(u)f u

(3.4)

t q (u)
=exp( 1 1 - du) if 8 1.o F(u)

The functions F(-) and q() are directly estimable from the data one

sees in a competing risks experiment. Let T, .. ., T ndenote the observed

7 test times of n individuals put on test and let I., i = 1, ... , n be 1 or 0

according to whether the T. was an observation on X. or Y., respectively.
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Def ine F-(t) E X(T1 > t/n and Q (t) Z ~X (T. ,1 <) 0

Then if e is known, a natural estimator of S (t) is

t dQ 1 (u) 1
S (t) [1+ (6-1) (u)p I a81 if 8 I

(3.5)

exp( - Q()if 8

0 #u

For 6 1, this estimator is of the form of the hazard rate estimator

proposed by Nelson (1972). The estimators (3.5) can be expressed in

the following form for computation purposes.

(t)= exp - Z(n-iI-) if e=1
8T& <t I =

M- i' (i)
(3.6)

* [1 + (6-1)nO (n-i+l) 81 -1

if 8 1

where T(1 ~.. T are the ordered death times.
(n)

For 6 known and if the true underlying joint distribution of (X,Y)

is of the farm (2.1) then S (t) is a consistent estimator of S(t) as shown

by the following theorem.

Theorem 1. Let (X,Y) have the form (2.1) with marginals S(t), R(t)

respectively. Let 8 > 1 be known. Then on the set where S(t) > 0 we have

S (t) -S(t) a.s.



Proof: 4

For e 1, the result follows by a theorem of Langberg, Proschan and

Quinzi (1981). Suppose that 6 > 1. Note that Q() Q t)a.s. and

F(u) -~ F(u) a.s. by the strong law of large numbers. Since S (t) is a

d~ d(u)

continuous function of 1 in the support of k )it suffices to show

o (F(u)]0

t -'t

dQ (u) dQl(u) as

o [(u)j0  0 IF (u)]0

Now, after an integration by parts,

tt
du)u Q(t) 1

(1u)d(l 0
*.0 (F(u)j (F(t)]e 0 F (u)

Q1(t) t 1
[F~t]0  

u Q1 (u)1dC(0 6 + I )lu~(
0 F~) 0 u

(t Q (t) - 1 u)dt
O [Q (u) Q u d(

[F u) 0 F 1 p(u)

+ dQ 1 (u)

0 F (u)

By the dominated convergence theorem

t t
lim dQ,(u) d 1 u ~ .

0 [~(~iP 0 [F(u)p
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lim Ql(t) - Q1 (t)

IP (u)16 = 0 as.

~~and ""
- sup {IQ 1(u) - Ql(u)I1 0, a.s.

lira

Hence, applying the above results to (3.7), the result now follows: //

To obtain bounds on the net survival function based on data from a

competing risks experiment, we proceed as follows. First, note that from

(3.5) it is true that S8 (t) is a decreasing function of 8 for fixed t.
Aloa +  hav Ss- 1 0

Also, as 6 1 we have S8(t) + exp (- F (u)dQl(u)).

0

which provides an upper bound. Notice that this upper bound corresponds

to an assumption of independence. As 8 -* one can show that Se(t) + F(t) _

which corresponds to Peterson's (1976) lower bound.

In practice the above bounds, with e = 1, w, while shorter than

Peterson's bounds, may still be quite wide.

Tighter bounds may be obtained by an investigator specifying

a range of possible values for e. If the sample size is sufficiently

large and 61 0 f e2t then S,(t) < S(t) < S l(t). Specifying 81, 82

is equivalent to specifying a range of values T < T < T for the

coefficient of concordance T since 8 - (1 +T)/(l -T). Hence the primary

L value of S (t) is in putting bounds on S(t) rather than on estimation of

S(t).

*, I

p°

• -
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IV. EXAMPLE AND COMPARISONS

To illustrate the bounds obtained in the previous section, consider

the mortality data reported in Hoel (1972). The data was collected on a

group of RFM strain male mice who were subjected to a dose of 300 rads of

radiation at age 5-6 weeks. There were three competing risks, thymic

lymphoma, reticulutum cell sarcoma, and other causes of death. For

illustrative purposes we consider reticulum cell sarcoma as the risk of

interest.

Table I reports the value of S (t) for concordance T (6 - 1)/Ce + 1).
o

The value of Se(t) at T = 0 corresponds to Nelson's (1972) hazard rate

estimator assuming independence. Petersonts upper and lower bound

(T 1) are also reported as are Fisher and Kanerek's bounds and the Slud

and Rubenstein bounds for several values which reflect a positive "

association between risks.

From Table 1 we first- note that Peterson's bounds are very wide.

Substantial improvement is obtained if one assumes a non-negative

dependence structure between risks (See Table 2). Further tightening

of these bounds is achieved by assuming that T is in the range 0 to .5

where the width of the boundaries is at most about 50% of that of Peterson's

bounds.

Substantial improvement in the general bounds is also obtained by

the bounds of Fisher and Kanerek or Slud and Rubenstein. The bounds of

Fisher and Kanerek assume a specifi: censoring pattern and require a

specification of a stretching constant at. Without some additional informa-

tion, such specificarion may be impossible. Slud and Rubenstein's bounds

are for the general dependence structure. Their bounds require the

. .. -.

=e ' ' ° _. . .= m . = "° ".*. . " .*o . .. ~ . . *.. .. .. -. , .-.. . ... - .. - . ., • ° , ° -. ,- '-
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specification of the p(t) function. This function is a quantity which

is not easily conceptualized by investigators from either a statistical

or biological perspective. This makes it questionable whether reasoable

upper and lower bounds on p(t) can be extracted from one's prior beliefs.

The major advantage of the bounds printed in this paper is that they

require only the specification of an upper and lower concordance, a

measure quite familiar to most investigators and easily explainable to
p

nonstatisticians..

.L i

• * *.. -* . . *.. .. * * .. .
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Table 2

* ~*.RELATIVE SIZE OF THE BOUNDS ON NET SURVIVAL

FOR AN ASSUMED DEPENDENCE STRUCTURE

on AS COMPARED TO PETERSON'S BOUNDS

Time 0 < T < 10 < T < .5 0 < T < .7

*.350 .9707 .0879 .2674

525 .9352 .2449 .5931

600 .7338 .5171 .6787

620 .6722 .5120 .6298

650 .5009 .4420 .4870

*675 .3831 .3576 .3797

700 .2883 .2767 .2833

750 .0600 .0600 .0600
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Running Head: Estimators of survival with right-censoring
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A COMPARISON OF SEVERAL METHODS OF ESTIMATING THE

SURVIVAL FUNCTION WHEN THERE IS EXTREME RIGHT CENSORING

M. L. Moeschberger John P. Klein
Dept. of Preventive Medicine Dept. of Statistics
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I

ABSTRACT

When there is extremecensoring on the right, the Kaplan-Meier
* product limit estimator is known to be a biased estimator of the

survival function. Several modifications of the Kaplan-Meier
estimator are examined and compared with respect to bias and mean
squared error.

* Key words: Adjusted Kaplan-Meier survival estimation,

Bias of survival function, Life-testing,

Survival analysis, Right censoring
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1. Introduction

In human and animal survival studies, as well as in

life-testing experiments in the physical sciences, one

method of estimating the underlying survival distribution

(or the reliability of a piece of equipment) which has

received widespread attention has been the Kaplan-Meier

product limit estimator (Kaplan and Meier, 1958).

For the situation in which the longest time an individual

is in a study (or on test) is not a failure time, but rather

a censored observation, it is well known that there are many

complex problems associated with any statistical analysis

(tagakos, 1979). In particular, the Kaplan-Meier product

limit estimator is biased on the low side (Gross and Clark,.

1975). In the case of many censored observations larger

than the largest observed failure time this bias tends to be

worse. Estimated mean survival time and selected percentiles,

as well as other quantities dependent on knowledge of the

tail of the survival function, will also exhibit such biases.

A practical situation which motivates this study is a

large-scale animal experiment conducted at the National

Center for Toxicological Research (NCTR) where mice were fed

a particular dose of a carcinogen. The goals of this experiment -

were to assess the effects of the carcinogen on survival and

on age-specific tumor incidence. Towards this end, mice

were randomly divided into three groups and followed until

-'°. , " . .0 .. °. °- % , . * .- % % ." . ,° °•o, - . . °. . . . . *. " *.* .. *
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death or until a prespecified group censoring time (280, 420,

or 560 days) was reached at which time all those still alive

in a given group were sacrificed. Often there were many

surviving mice in all three groups at the group's sacrifice
time.

In general, we consider an experiment with n individuals

- under study and censoring is permitted. Let t(J) ,... t( )

denote the m ordered failure times of those m individuals

whose failure time is actually observed (t(1 ) t(2) < ..

t ) The remaining n-m individuals have been censored at

various points in time. It will be useful to introduce the

notation Si = number of survivors just prior to time t(j),

i.e., S. is the number of individuals still under observation

at the time t(j), including the one that died at t € Then

*i the Kaplan-Meier product limit estimator (assuming no ties

among the tj ) 's) of the underlying survival function, .-

F(t) P (T>t),is

1 I for t<t(11

P~(t). Pit) = j
1 (S -1)/S for t t't

Ll Lj) Lw t(j+l)Z=I I

0 for t>t
-(m+l)



3.
for j=l,...,m, where t(m+1)t c if the longest time an
individual is on study is a censoring time or t l= if

(m+l)

the longest time an individual is on study is a death.

This paper, first, proposes in Section 2 some methods of

"completing" the Kaplan-Meier estimator of the survival

function by i) replacing those censored observations that

are larger than the last observed failure time by their

expected order statistics, ii) using a Weibull distzibution

to estimate the tail probability, P(t), t~t , and iii)

employing a method suggested by Brown, Hollander and Korwar

(BHK) (1974). The second purpose is to demonstrate the

magnitude of the bias and mean squared error (MSE) of the

Kaplan-Meier estimator and to compare all methods of --

"completing" P(t), in the context of the aforementioned

mouse study, utilizing simulated lifetimes from exponential,

Weibull, lognormal, and bathtub-shaped hazard function

distributions. These results are presented in Section 3.

2. Completion of Kaplan-Meier Product-Limit Estimator

2.1 Expected Order Statistics

One method of attempting to "complete" p (t),t>tc, would

be to "estimate" the failure times for those censored obser-

vations which are larger than the longest observed lifetime. -

Let nc be the number of censored observations larger than

t A theorem regarding the conditional distributions of

order statistics states that for a random sample of size n

from a continuous parent, the conditional distribution of

" , o- .• . ° . . . . ..Q , , , •- ° o ° . " ° ,'".. . -, . .
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T(u) given T (n-n ) n un-n c is just the

distribution of the (u-n + nc)th order statistic in a sample

of size n drawn from the parent distribution truncated on
C

the left at t . S tne h (David 1981, p. 20).

For computational purposes, take t as an estimate of

the (n-n )th order statistic. Then find the expected value
c

of the nc order statistics from the parent distribution

truncated on the left at t c Since the Weibull distribution

bution theory to complete P(t), t>t c. (It should be noted

that any distribution which is reasonable for the specific. .

situation may be used.) The expected values of Weibull

order statistics up to sample size 40 for location parameter

- 1 and shape parameter = 0.5 (0.5)4(1)8 may be found in

Harter (1969). For larger sample sizes he states a re-

currence relation which may be used.

To compute expected values of the nc order statistics in

question, values for k and 0 must be chosen. One approach is

to use the maximum likelihood estimators, k and 0,computed

by using all observations to' estimate k and e. A second

approach, due to White (1969), uses least squares estimates

of k and e obtained by fitting the model

1n (t(j))=(l/k)lne+(l/k)ln H(t(j)) (2) 9

t. .

• , ." ,



5.
to the t( s where H(t(j)) is the estimated cumulative g

(j)()
hazard rate at t(,) obtained from the Kaplan-Meier estimator.

Based on our Monte Carlo study we found the maximum likeli-

hood estimators performed better in all cases than did the

least squares estimators. Consequently, the method of least

squares will be dropped from future discussion in this paper.

The survival function for a Weibull random variable,

truncated on the left at tc , is

P (t) = exp {-(t k _ tk )/0} , t>t (3)Tc "

So, by the theorem on order statistics stated at the be-

ginning of this section, the conditional distribution of

T (u ) , given T(n-nc)=t(n-nc ) (u =n-nc +1,...,n) will be --

c c
approximated by the (u-n + n )th order statistic in a sample

c

of nc drawn from (3). For simplicity, let j - u - n + n

so that j =l,...,nc.

Now the expected value of the jth order statistic from (3) is

E(T )= jl{PCt .k-

E(Tj:n n c c-i t{P T(t) }nc -j+l(ktk-i/G)dt

c

k k 1/k iipylcjly-/
f) (y +tc ) (P(y)jl{ ly) c (kyk-I/ )dy (4)

=nc~j1 ] k k k i/I }/k~

where P (y) = exp(-yk/),y(tk _k >/k0

and T j:nc is the jth order statistic in a sample of size nc.

• . . .

. . . . . .. . . . .

. . . . . . . . ... .. . . . . .
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Equation (4) can also be written as 6.

'i-~~ -"n-1"

E (Tj )=n
(fl; 1 ), (ektk) 1/k ~ j-1{ -z In-j k

S (z+t) {(z)} {P(z)}cJ+lkzkldz (5)AR
where P (z) = exp (-zk) , z = 1/k 0

Now E(Tj:n c ) may be crudely estimated by

{ E (Z. ) t (6)

where E(Zj ) is the expected value of the jth order
r J:nlc

statistic from a sample of size nc determined from Harter's

(1969) tables or recurrence relation and e and k are

maximum likelihood estimators of 0 and k respectively.

These n estimated expected order statistics may then be
C

treated as "observed" lifetimes in adjusting (or "completing")

the estimated survival function computed in (1). The area

under the estimated survival function up to tc remains un-

changed. The area under the extended estimated survival

function based on the nc estimated expected order statistics

is then added to the initial area to get a more precise

estimate of P(t) (EOS extension).

2.2 Weibull Maximum Likelihood Techniques

A straightforward approach to completing P(t) is to set

k
P(t) = exp (-t /0) for t>t. (7)

Estimates of k and 0 based on all observations can be obtained

by either the maximum likelihood (WTAIL) or the least squares
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method. However, our study found the completion using

maximum likelihood estimators was always better in terms of

bias and mean squared error.

One ostensible suggestion for improvement of this

estimator would be to "tie" the estimated tail to the

product-limit estimator at t. Two methods were attempted

to accomplish this goal. First, the likelihood was maximized

with respect to k and 0 subject to the constraint that
k

exp (-tc /0)=P(tc) .-This method will be referred to as the

restricted MLE tail probability estimate (RWTAIL extension).

Second, a scale-shift was performed on the tail probability

in (7) so as to tie it to the product-limit estimator. This

method led to higher biases and mean squared errors of the-

survival function and will be dropped from further discussion

in this paper.

2.3 BHK Type Methods.

The Brown-Hollander-Korwar completion of the product-limit

estimator sets

P(t) = exp (-t/O) for t>t (8)C

where 0 satisfies

P (tc) = exp (-ti/0).
c c

In the BHK spirit we tried to complete P(t) by a Weibull -

function which used estimates of k and e,k and 0 , that

satisfied the following two relations

k*

P.it (M)~ exp(-t (Mn)/G

-*. . . ....... * * *. * ** * * * .. '-
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"- .and S

P (t )exp(- /0*)(rn-I) (mn-1)
The latter method also led to. consistently poor performance
and the results will not be presented.

3. A Comparison of the Various Methods

A simulation study of data like that collected at NCTR

was performed. Three groups of 48 lifetimes were simulated S

with all testing stopping at 280, 420, and 560 days for the

three groups, respectively. Distributions with mean survival

times of 400, 500, and 600 days were used. The generated p
* .. lifetimes greater than or equal to the sacrifice time for

that particular group were considered as censored. The

remaining set of observed lifetimes, along with the number

censored at the three sacrifice times constituted a single

sample. For each of the distributions studied, 1000 such

samples were generated. Weibull distributions with shape

parameters .5, decreasing failure rate , 1, constant failure.

rate, and 4, increasing failure rate, were used. Lognormal

-distributions, failure rate changes from increasing to

decreasing, with first two moments comparable to the above

Weibull distributions with k=l and k=4 were also used.

Finally, a bathtub hazard model, of Glaser (1980), failure

rate changes from decreasing to increasing, was used. This

. distribution is a mixture of an exponential of parameter A

with probability 1-p and a gamma with parameter A and index

I . . .
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of 3 with probability p. Mixing parameters of p=.l and p=.4 *6

were used.

The bias and MSE for the estimation of the tail probabil-

ities,i.e., the completed portion of the product-limit

estimator, were calculated for each hypothesized distribution

and for each competing method of completion. Since these

results were extremely similar to those found in estimating

mean survival time, i=. P(t) dt, we only show the bias and

MSE of each competing estimator of u in Table 1. This also

allows us to demonstrate the magnitude of the bias and MSE

of the product-limit estimator of U. The bias and MSE for

estimating the 90th percentile are also presented for the

various estimation methods in Table 2. As one would expect,

the Kaplan-Meier (K-M) estimator performs considerably more

poorly than the other estimation schemes. The BHK extension

does very well if the underlying distribution is exponential

or lognormal with first two moments compatible with the

exponential. BHK does reasonably well for the bathtub shaped

hazard model but it performs very poorly for the Weibull with

increasing failure rate and for the lognormal with first two

moments compatible with the Weibull.

The remaining three extensions (EOS, WTAIL, and RWTAIL)

appear to be somewhat comparable. Each of them are best under

certain circumstances although many times the biases and MSE's

are so close to one another that they are essentially equiva-

-I o

..............................................
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lent. Only the EOS extension has the desirable property of

never being worst. It usually is competitive with the method

that is best.

Ordering the extensions from the standpoint of simplicity,

simplest to most complex, we have BHK, WTAIL, RWTAIL, and EOS..

In summary, the Kaplan-Meier estimator should probably be

. extended in the presence of extreme right censoring. One's A

choice 6f extension depends upon one's knowledge of the

distribution of lifetimes under consideration and the extent

of computer facilities available. If the data follow an ex-

ponential type distribution or if no computer facilities are

present the BHK method is the extension of choice due to its _-".

simplicity. If the data exhibit a non-constant failure rate

and computer facilities are available then the RWTAIL or EOS

extensions seem to be advisable to use.
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TASLE I

Bias/100(and HSEI(100) 2 ). for Estimating 1oan Survival Time
for Various Methods of Completion

testrictea

Mean 2 Zati-ated Wolbull Velbull
censored IHK Order Statistic WTai iV TZL

Distributions H at 560 days X-H Extension Extension Extension Extension

v b
W Veibull 400 18.7 -2.000 -1.462 -.101 .131 .206

(4.034)' (2.271) (1.172) (1.160) (1.43)

k-.5 500 22.3 -2.802w -2.078 -.176b 206 .299

(7.,886)w (4.498) (1.922 )b (2.344) (3.292)

. 600 25.5 -3.62?v -2.704 -.187b  .344 .479

(13.179)" (7.522) (3 .02 5)b (4.275) (6.031)

400 24.6 -.991" -.047 -.046 .016b  .0379

(1.011)w (.215) b  (.257) (.275) (.343)

k-l 500 32.6 -1.632 -.049 -.047b .073 .116

(2.696)w (.4 16)b (.535) (.508) (.705)

600 39.3 -2.359 0 22b .034 .140 .214 2

(5.592)' (,596)b (.987) (1.023) (1.353)

400 17.5 -.036 .136" -.005 .003b 004
(.012)b (.053)' (.013) (.014) (.014)

k-4 500 34.6 -.314 1.507V  -.020 .014b  .019

(.109) (2.830) ((036)6 (.041) (.044)

600 59.9 -.903 5.982 .14" .0286 .039

(.822) (41.430)" (4.168) (.147) b  (.157)

lognormal 400 20.6 -.,68w -.178 b  -.544 -.586 - .412

(.777)w (.179)b (.363) (.403) (.267)

(k-1) 500 29.0 -1.427w -. 150b -.865 -.918 -.696
b

(2.060)' (.323) (.855) (.938) (.644)

600 36.9 -2.0797 0.0 22b -1.234 -1.281 -1.038
b

(4.345)" (.571) (1.679) (1.800) (1.301)

400 8.6 -.070 .129" .047 0.053 -.027 b

(.014)
b  (.056)w (.014)

b  (.014)
b  (.0 14 )b

(k-A) 500 29.1 -.330 1.033" -.170 .181 -.135b

(.118) (1,.459)w (.051) (.055) (.043)"

600 54.5 -.853 4.430" -.391 -.392 -.356
b

(.734) (23.159)" (.199) (.199)
b  (.177)

b "

Bathtub 400 18.6 -1.069 -.185 -.170 1.125" .063b

- (1.175) (.234)b (.260) (1.745)" (.361)

p-. 1  500 26.1 -1.722 -.259 -.202 1.523 .046b

(2.996) (.4 27)b (.560) (3.230)' (.608)

600 32.6 -2.452" -.362 -.310 1.761 .047"

(6.043)" (.727) b (.982) (4.490) (1.254)

400 8.1 -1.786" -1.543 -1.547 -.936 .343b

(3.218)" (2.463) (2.476) (1.081) (,544)b

p-,4 500 13.3 -2.370" -1.826 -1.814 -.825 .585b "

(5.649)w (3.472) (3.446) (1.031)6 (1.303)

f 600 18.7 -3.072" -2.191 -2.175 -.875 .841b "

(9.466)" (5.013) (4.983) (1.285)b  (2.792)

B Best estimation method

Wjorst estimation method

* . .-. - -.- ----- -.
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TABLE 2

Bias/O0 (and MSE/(100)2 ] for zstimating, 90th Percentile
for Various Methods of Completion

Estiated whbl NkLbull

aw Oder Statistic WTAIL RNTAIL
Distributions i K-M Extensi D&tS1si: Extesi5on actoi-

, Weibull 400 -5.017 w  -2.858 1.691 .234b  .458
(25.185)' (9.358) (16.424) (7.524) (10.12)

(10.b612)

k-.5500 -7.655w  -4.620 1.897 .418b .642
(58.604)w (22.711) (24.276) (14.319)b

600 -10.306
w  -6.390 2.213 .734b  1.064

(106.21)
w  (42.449) (36.895) (2 5 .4 1 9)b (37.911)

400 -3.610 w  .0 6 4 b .248 .084 .067

(13.035)w  (1.892) (2.423) (1.980) (2.945)

k-l 500 -5.913w  .096b  .289 .121 .306

(34.963)w  (2 .9 95 )b (4.681) (4.361) (5.903)

600 -8.216w  .2 4 4b .610 .418 .550

(67.459)w  (4.198) b (9.247) (8.331) (10.792)

400 -.045 .098w  -.007 b  -.037 -.011

(.038) (.236)w  (.060) (.047) (.063)

k-4 500 -1.195 5.324" -.031 -.026 .024

(1.429) (33.091)
w  (.146) (.141) b (.177)

600 -2.554 17.913
w  .120 .090 .068

b

Vb
(6.524) (355.02)w  (.794) (.676) (.641)

lognormal 400 -2.628 w  -.044b -1.263 -1.758 -.967

(6.908)w  (1 .5 2 6 )b (1.979) (3.407) (1.673)

(k-1) 500 -4.680 w  .2 1 3 b -2.354 -2.718 -1.908

(21.902)w  (2 .7 0 8 )b (6.153) (7.909) (4.751)

600 -6.736" .7 5 9 b -3.507 -3.766 -2.980

(45.373)
w  (4.764)

b (13.123) (14.981) (10.257)

400 -.085 .161 -.038 -.162w  -. 024

(.0 6 0 )b (.409)w  (.081) (.065) (.093)

(k-4) 500 -1.251 3.722w  -.584. -.657 -.484 b

(1.566) (17.654)" (.403) (.495) (.318)
b

600 -2.621 13.695
w  -1.214 -1.236 -1.15e

b

(6.872) (210.30)
w  (1.616) (1.662) (1.498)

Bathtub 400 -3.629" -.177 -.104 .105

(13.167)
w  (1.717)b  (2.052) (2.058) (3.190)

p-. 1  500 -6.068 w  -.457 -.071 -.208 .004b

(36.826)" (2 .9 5 5 )b (4.702) (3.619) (5.245)

600 -7.997
w  -.318 .043 -.244 -.014

b

(63.954)" (4.330)b (7.786) (7.608) (9.923)

400 -.347 .1 4 3b .276 1.154w  .981

(.7)b (.844) (1.078) (3.877) (4.747)"
b v

p-.4 500 -1.425 .521 .764 1.699 1.718
b

(2.035) (1.540) (2.067) (8.574) (10.714)w

600 -3.554 w  -.137 .132 2.304 2.450

(12.628)
w  (1.904) (2.352) (17.530) (22.456)

-- b
Best estimation method

w

Worst estimation method
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ABSTRACT

The problem of estimating reliability for the bivariate

S. exponential distributions of Block and Basu (1974) and Marshall

and Olkin (1967) is considered. For Bock and Basu's model a

minimum variance unbiased estimator of the joint survival

function is obtained in the case of identically distributed

marginals. For the non-identically distributed case the

performance of the maximum likelihood estimator and the

jackknifed maximum likelihood estimator is studied. For

- .- Marshall and Olkin's model the performance of several different

parameter estimators and bias reduction techniques for estima-

".t ing joint reliability are considered.

KEY WORDS: Minimum Variance Unbiased Estimators; Bivariate

*, .- Exponential; Reliability; Maximum Likelihood Estimator;

Jackknife; Survival Function.
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I. INTRODUCTION

Let X, Y have either the bivariate exponential distribution

(BVE) of Marshall and Olkin (1967) or the absolutely continuous

bivariate exponential distribution (ACBVE) of Block and Basu

(1974). These two distributions have found considerable use as

models for both physical and biological systems. The problem

of interest is to estimate the joint reliability function,

F(x,y) = P(X>x, Y>y), for each of these two distributions. A

natural estimator of F(x,y) is obtained by substituting in the

[ appropriate expression for F(x,y) good estimators of the model

parameters. Often, as seen in Pugh (1963), Basu (1964) or Basu

and El Mawaziny (1978), such estimators can be considerably

IL biased. We wish to obtain reduced biased estimators of F(x,y)

for both the BVE and ACBVE distributions.

In Section 2 this estimation problem is considered for the

ACBVE. In the case of identically distributed marginals, using

the Roa-Blackwell and the Lehmann-Scheff6 theorems we obtain

minimum variance unbiased estimators (UMVUE) of F(x,y). In

the case of non-identically distributed marginals this approach

fails since there are no complete sufficient statistics. Here

we investigate the performance of the maximum likelihood

-. . - C . - .**-. .
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estimator as well as the jacknifed maximum likelihood estimator.

In Section 3 we consider the estimation of F(x,y) for the

BVE. Again there are no complete sufficient statistics so no

minimum variance unbiased estimators can be obtained. Several

different methods for estimating parameters are considered. For

each estimation procedure we consider several bias reduction

techniques.

2. ABSOLUTELY CONTINUOUS BIVARIATE EXPONENTIAL

2.1 Introduction - -

Let (X, Y) have the absolutely continuous bivariate

exponential distribution of Block and Basu (1974) with parameters

1' 2 >  , 12 
> 0 ((X, Y) ACBVE (Al, A2, A1 2)). This

distribution is closely related to the bivariate exponential of

Freund (1961). It has been used by Gross, Clark and Lui (1971)

and Gross (1973) to model the lifetimes of two organ systems

and by Gross and Lam (1981) for modeling paired survival time

data such as survival of a tumor remission when a patient

receives two types of treatment.

For this model the joint reliability function is

7"S

|;%B°
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P(x,y) =exp(-A X-Ay- 1  max(x~y))

12 exp(-A max(x,y)), for x, y > 0,
(A+2)

with A X=1 + A 2 -+ .2 (2.1.1)

This distribution has the bivariate loss of memory property

(LX?) defined by Block and Basu (1974). It is the absolutely

continuous part of the Marshall and 01kin (1967) bivariate

exponential.

I We shall consider two cases for estimating F(x,y), one

where the marginals are identically distributed and the general

model.

2.2 Equal Marginals

Consider the model (2.1.1) with A, X 2 = a and 12

Let x1,y1) ... (x, ~ be a random sample from (2.1.1).

Let U1  Zrax(x., Y..) and U2  E(xi + yd). Mehrotra and

Michalek (1976) show that (U1 9 U2) is a complete sufficient

statistic for (aL,B). The MLE of a,B3 are given by

a E n ( fu -2u- n (uu 2  u+) (2.2.1)9

u 2- 1 u 2ul-u2 u -u
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These estimators are biased by a factor of n/(n'-1) so the

estimators =f & and B iB are the UMVUEof and(3
n n

Two natural estimators of F(x,y) are obtained by sustituting

either (ax, B)or (ax, ~)in (2.1.1).

We now use the method proposed by Basu (1964) to obtain the

UXVUE of F(x,y).

Define

~(xy: X,) 0 i otherwise (2.2. 2)

Clearly $(x,y: X,Y) is an unbiased estimator of F(x,y) based on

*a random sample of size one from a ACBVE (c±,c±,6). By the Rao-

Blackwell and Lehmanrr-Scheff4 theorems the estimator F(x,y)

E(4P(x,y;X,Y)ju1 ,u) is the UMVUE of F(x,y). --

To simplify the calculations let T =U -U and V =2U .U
2 1 1 2'

that is T Z min(X.,Y.) and V =Emax(X.,Yi) - Z min(X.,y.).

From Hehrotra and Michalek (1976), the joing density of (T,V) is

f(t,v) t n1Vn- exp(-(2ci+$)t-(cr-S)v), t, v> 0

L( otherwise. (2.2.3)

Now. split the sample of size n into two independent sub-

samples of sizes one and n-i, respectively. Let (/.,, Z denote

the sample of size one and let T,, V1 denote the statistics T
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and V defined on the remaining n-I observations. 'The joint

density of (ZI, Z2, TI, V1) is

*:" f(zl,z 2 ,tl,Vl)= i ( 2 a+ )n(ca+B)n2 ( 2 ) ]  ln-2vln-2ex[(eStaSV - 11.i

"~ (2L+a)n(+) tln-2 vln-2 exp[-(2ct+B)tl-(X+B)Vl v

2[(n-2)!] 2  ...

MaOZ (XBz if z< Z

n n(2Q,+a (c-4 t n- 2 v n -2 ep (c+)t(L6

(a+3)zl-CZ 2] if z < z (2.2.4)

for ti' v1 > 0.

Clearly V = 1 + max(Zl, Z2 ) - min(Z1 , Z2 ) and T =T 1 +

min(Z I , Z2 ). Hence the joint density of (ZI, Z2 , T, V) is

f(z ,z 2 ,t,v) = .

(2a+a) n (,+,) n n-2 n-2
(t-z 1) (v-z 2 +z 1 ) exp(-(2a+B)t-(±+B)v) for

2[(n-l)! ]'"'

0 < v, t; 0 < z < t; z < z, < v + z

( n n-2
2+ ni) (t-z (v-z +Z )exp(-2t+a)t-(C (+6)v)"- 2[(n-1) !]

0 < v,t; 0 < z2 < t 2 < Z1 < V + z 2

(2.2 5)

Thus the conditional distribution of ZI, Z2 given T, V is

(n-1) 2 (tzl)n-2 (V-z 2 +z,)n-2
f(zl'z 2 jT=tV=v)= - n-i n-t

2 t V- -

z < v + z
Z1  21

2n-2 n-2

2 tn-i n-i2
z < z < v + z

C2.-Ab)

...............................-. . ..-.... **,....-.
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To find EC4 (x,y; Z1,Z )IT = ,V =v) consider three

cases.

Case 1: t >x y >O0. Here,

-. E(O(x,y;Z,,Z2 )jTt, V=v)=

_)2 (t n-2 n-2
tv+z (n-i _tZ1) (v- 2 +Z 1

-
2 J f n-I n-I dz 2dz 1x z2t v

- (1- ) n-1 (2.2.7)
t

Case 2: x <y< t. Here,

* .E(O(x,y;Z,,Z )JT-t, V.=v) f f f(z1 ,z2It,v)dz dz2 +I

1' )z 1>y 2>y

+ f ff(z1, z jt,v)dz dz (1-Z i +
{(1, 2 1 ~ 1<y yz2}t

JV+z 2 n-2 )n-2
1,(n-1) (t-z 1  (v+zl-z2 ) ddz=(.Z)n+

x y 2 n-i n-i 2 1 t
t V

+ -(n-i) n-1 ( k % k )(v-y+t)n-- n--k-i n~k

(2.2.8)

Case 3: t > x > y o.

By symmetry E(O(x,y; Z,,Z)IT=t, V=v) =(ix) n-i +

n-1
(n-i) nil (,,)k( k )n-i-k n+k-i n+k-1

2v n-1itn-1 k=0 (n+k-) (-+t) 1((t-) -(t-x) I -

(2.2.9)
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2.3 Unequal Marginals

When (X,Y) is ACBVE ( 2, 12) with A1 not known to be equal to

A there does not exist a set of complete, sufficient statistics for
2'

(A1,A2 ,A12 ). Hence, the technique described in section 2.2 fails.

Maximum likelihood estimators of (A A 2 ,A 12 ) are obtained numerically by

maximizing the likelihood equation as described in Block and Basu (1974).

The maximum likelihood estimator, F(x,y) of T(x,y) is obtained by

substituting these estimators into (2.1.1).

For small sample sizes, this estimator may be highly biased. To

reduce this bias we consider the jackknifed version of the MLE estimator.
.-0)

This estimator is constructed as follows: Let F J) (x,y) be the MLE of~~~(n-1) i'
th - -

F(x,y) based on the subsample of size n-I obtained by deleting 
the j

observation from the original sample. The jackknifed version of F(x,y) is

n
F. (x,6) n F(x,y) - -t-b EL (X,y). (2.3.1)
lack n j-l (n-l)

Miller (1974) shows that this estimator removes the n-1 th order term in

the expansion of the bias of F(x,y).

To study the performance of the MLE and the jackknifed MLE of

F(x,y), a simulation study was performed. For various values of A XA

and n, 500 ACBVE samples were generated by the method of Friday and

Patil (1977). Values of (x,v) were picked so that F(x,y) = .9. The

study showed that the jackknifed maximum likelihood estimator had

significantly smaller bias than the MLE. For sample sizes of 10 or

. larger, the bias of this estimator is not statistically different from

zero. However, the jackknifed MLF has a slightly larger mean squared

error than the MLE in all cases considered.

f..

%. . . . . . . . . . ... .. . "-"- " " - . ."%-,- -%-.-, .,,''''' ." "_. ." " i ." ." i .> 1..
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3. BIVARIATE EXPONENTIAL

3.1 Parameter Estimation

We say (X,Y) follows the bivariate exponential distribution of

Marshall and Olkin (1967) with parameters )i > 0, X > 0, and
12

12 O((X,Y) is BVE (Ai A2 , A1 2 )) if the joint survival function is

P(X > x, Y > y) = F(xy) = exp(-XlX-X 2y-Xl 2 max(x,y)) (3.1.1)

for x > y > 0. This distribution is not absolutely continuous since

P(X = y) = A1 2 /(A I + X2 + A1 2 ). The marginals are exponential as is

min(X,Y). This is the only bivariate distribution with exponential

marginals and the loss of memory property (LMP) as defined in Block and

Basu (1974).

To estimate X. X2, X 12 based on a random sample (Xl, Y1 ), (X, Yn),

let n I , n2 , n1 2 be the number of observations with X. less, greater, and
29 12

equal to Y., respectively. Let T = Zmax(Xi, Yi), S = EX., S = EY "
i x i y 1'" [

Bhattacharyya and Johnson (1971) show that (nl, n2, t 2 , sx , s) are

jointly minimal sufficient but not complete. Hence, the approach of

section 2.1 cannot be applied. The maximum likelihood estimators are

obtained by numerically maximizing the likelihood equations. Bhattacharvya

and Johnson (1971) obtain conditions under which the MLE exist, and show

that these estimators are asymptotically trivariate normal with mean

11i 2. 12,( '2

Bemis, Bain, and Higgins (1972) have obtained method of moments

estimators of the parameters. Proschan and Sullo (1976) obtained

estimators of the parameters by using a first iterate in the likelihood

equations. Arnold (1968) gives estimators of X based on nI , n2, n and
12

%-I.-
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U min (Xi, Y.). In the competing risks framework where only the

minimum of X and Y is observed, these estimators are the unique minimum

variance unbiased estimators of Ai. All of the above estimators are

asymptotically trivariate normal with mean (Al, A 2, 12) .

3.2 Estimation of Tail Probability

The problem of interest is to estimate F(x,y) given by (3.1.1).

A natural method of estimating (3.1.1) is to use one of the above methods

(X' 2' 12 ) and substitute these estimates in (3.1.1).

Several methods may be uwed to reduce the bias of these estimators.

The first approach is to expand the substitution estimator in a Taylor

series about (A1 , X2  A 12 ) keeping only second order terms. When

E(A.) = Ai. the bias of the substitution estimator is approximately equal tO

2
E(F 5SU(x,y)) = F(xy) [1 + a /2] where

£. O2 (x,y, max(x,y))Z(x,y, max(x,y))' (3.2.1)

and E is the appropriate covariance matrix of (X X X
' 2' T12

suggests a reduced bias estimator of F(x,y) given by

F~5 xy F F~(XY)/[l + 11/21 (3.2.2)

where (32 is an estimator of 0
2

A second approach to the bias of FSUB(x,y) is through

asymptotic theory. Note that in F5 uB(x,y) is asymptotically

normal with mean -A1x -A2y -A12 max(x,y) and variance 
2  Thus,

for large n, F U8 (xY) has a log normal distribution and
"S-B

.

o 
7

•~ % <.
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E(FSU(x,y)) F (x,y) exp(02 /2) (3.2.3)

A2 2

and V(F SUB(x ,y)) F(x,y)) 2eO (e -1). This suggests a reduced

bias estimator of F(x,y) given by

FLN(x,y) F SU(X,Y)exp (02/2). (3.2.4)

A third method to reduce the bias of F xy is the jackknife

a s described in Section 2.3.

To compare these estimators, a simulation study was performed.

500 BVE observations were generated for various combinations of

n, X values of (x,y) were selected so that 'F(x,Y) .9.

Several conclusions can be drawn from the study. First, for all

bias reduction techniques, those based on Arnold's estimators have a

significantly larger mean squared error but a smaller relative bias.

Secondly, there appears to be very little difference in the estimators

based on the other three methods. For Arnold's estimators, all three

bias reduction techniques yield approximately unbiased estimators with

comparable mean squared errors. For the other methods, oniy the

jackknifed estimator is approximately unbiased due to bias of the

parameters themselves. Our recommendation is to jackknife either the

Proschan and Sullo estimator or the method of moments estimator

since these are computationally easier than the MLE.

d6 . . .
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